

Technical Annex

Wind and solar benchmarks for a 1.5°C world

Table of contents

A1: The use of global pathways in the analysis	1
Selecting pathways	1
Downscaling global pathways	2
A2: National costs scenarios for different renewable technologies	2
Historic costs data	2
Future national costs projections	4
Results	7
A3: Existing capacities	9
A4: Bottom-up assessment of technical potential of renewable energy sources	9
A5: Results from renewable potential analysis for selected countries	13
Endnotes	16

A1: The use of global pathways in the analysis

Selecting pathways

Using the IPCC's AR6 Scenario Explorer and Database of IAMs , we select 32 scenarios which meet five criteria key criteria .

- → Scenarios are compatible with limiting warming to 1.5°C with no or low overshoot.
- → Scenarios represent the latest evidence on limiting warming to 1.5°C. This means they are published after 2018 (i.e. post- the Special Report on 1.5°C), with the exception of the low energy demand scenario. This scenario is retained as it offers a unique perspective on a 1.5°C aligned demand-side transition.
- → Scenarios have good regional resolution (provide global data split into 10 different macro regions). This was needed to enable downscaling to the country-level with sufficient confidence.
- → A sustainable amount of carbon dioxide removal is used—specifically, BECCS deployment is restricted to be less than 5 GtCO₂/yr over the 2040–60 period, and carbon removal from afforestation and reforestation is limited to be less than 3.6 GtCO₂/yr over 2040–2060 and less than 4.4 GtCO₂/yr over 2050–2100.
- Scenarios are consistent with achieving net-zero GHG emissions in the second half of the century, as stated in Article 4.1 of the Paris Agreement.
- → Importantly, none of these scenarios represent a fair distribution of the effort required to mitigate emissions. Instead, they explore the most cost-effective routes that limit warming to 1.5°C. Achieving the targets derived from these modelled scenarios would require that substantial financial transfers are made from developed countries to support emissions reductions in less wealthy countries.

Downscaling global pathways

IAMs provide results at the regional, rather than national level. In the IPCC AR6, global pathways are broken up into 10 major world regions, or "macro-regions". These 'macro-region' results then needed to be downscaled to the national level.

We do this via the Simplified Integrated Assessment Model with Energy System Emulator (SIAMESE). SIAMESE takes data at a regional level from IAMs and converts it to the national level, providing a perspective on what each country within a given region would need to do to achieve the overarching macroregion pathway. SIAMESE does this by allocating energy consumption to each country in a way that maximises the welfare of the macro-region as a whole. This simulates the cost-optimising logic of IAMs.

A2: National costs scenarios for different renewable technologies

A key input to the production of wind and solar benchmarks is the cost of the technologies involved. Here it is important to consider regional differences and future developments. The following section summaries the cost projections for wind and solar used in this work which account for regional variations in costs and the potential for future cost reductions.

In this first report, six countries were focused on: China, India, Indonesia, Brazil, South Africa and Germany. These countries illustrate how the method was applied. However, the method can be extended to provide regional cost data for other countries also.

Historic costs data

The starting point for projecting renewable costs is an understanding of their current costs, and how these vary across regions. To do this, we use the data by international renewable energy agency (IRENA) to capture the current cost trends of renewable technologies in different countries. In particular, we use two key publications: Renewable Power Generation Costs in 2021 and Renewable Power Generation Costs in 2019. These reports include data on global trends in wind and solar costs as well as country level data.

IRENA's reports provide comprehensive detail at the global scale. The 2021 report provides historical capital cost (CAPEX) curves for onshore wind, offshore wind, and open-field PV (assimilated to utility-scale PV). The report provides global weighted average costs, as well as 5th percentile and 95th percentile costs, which we apply as low and high costs, respectively. For rooftop PV, no data is available from the IRENA 2021 report, but weighted average costs for commercial and residential PV for the year 2019 or before can be found in the report from 2019. We then use the average of these two technologies to estimate the global medium costs of Rooftop PV.

However, the level of information available at national level varies strongly across technologies and countries. In the following section we provide a summary of what historic costs data for different technologies is available at a national level from the IRENA reports.

→ Onshore wind: medium costs is available from the IRENA report 2021 for all countries except Indonesia. Low and high costs is available from for all countries (except Indonesia, South Africa, and Germany, for which we have the corresponding macro-region data, see → Table A1).

Country	Medium cost	High/low cost
Brazil	Country data available	Country data available
China	Country data available	Country data available
Germany	Country data available	'Europe' data used
India	Country data available	Country data available
Indonesia	'Other Asia' data used	'Other Asia' data used
South Africa	Country data available	'Africa' data used

→ Offshore wind: medium, low and high costs are available from the IRENA 2021 report. This is available at the national level for China and Germany and the macro-region level for India and Indonesia. For South Africa and Brazil, no data is available at all all (see → Table A2).

Country	Medium cost	High/low cost	
Brazil	No data available	No data available	
China	Country data available	Country data available	
Germany	Country data available	Country data available	
India	'Asia' data used	'Asia' data used	
Indonesia	'Asia' data used	'Asia' data used	
South Africa	No data available	No data available	

Table A1 Availability of low/medium/ high costs data for onshore wind technology at national/regional level from IRENA 2021 report

Table A2 Availability of low/medium/high costs data for offshore wind at national/regional level from IRENA 2021 report

→ Open-field PV: only medium costs are available from IRENA 2021 report. These are available for all countries at national level except South Africa (see → Table A3).

Country Medium cost High/low cost Country data available Brazil No data available China Country data available No data available Germany Country data available No data available India Country data available No data available Indonesia Country data available No data available South Africa No data available No data available

> → Rooftop PV: same as open-field PV, we have only medium costs from Table 3.1 of the 2019 IRENA report. The data is available for every country except Indonesia (see → Table A4).

Country	Medium cost	High/low cost
Brazil	Country data available	No data available
China	Country data available	No data available
Germany	Country data available	No data available
India	Country data available	No data available
Indonesia	No data available	No data available
South Africa	Country data available	No data available

We use the medium costs data at the national level available in Table 3.1 for every country, except Indonesia where we have no data at all.

Next, we derive estimates of future cost trends to 2050 for different renewable technologies based on IRENA's Future of Wind 2019 and Future of Solar 2019 reports. These reports provide low, medium, and high costs projections at global level for 2030 and 2050.

Future national costs projections

For countries where data was lacking, we had to make our own estimates for future technology costs trends. Before going into details, we introduce the notation we will use for this section.

Capex(c, y, t, s)

Table A3 Availability of low/medium/ high costs data for Open-field PV at national level from IRENA 2021 report

Table A4

Availability of low/medium/ high costs data for Rooftop PV at national level from IRENA 2019 report Is the function for the costs, with:

- c the country (or global)
- y the year
- t the technology
- s the scenario (low, medium or high)

Also, we will use 'ratios', which are defined for each country, each year and each technology.

 $r_{high}(c, y, t) = \frac{Capex(c, y, t, High)}{Capex(c, y, t, Medium)}$

With the same principle for r (low).

The first step is to provide for each technology and country, cost data for the base year (2021 for onshore wind, offshore wind and Open-field PV and 2019 for Rooftop PV). To do this, we use the costs data presented in the previous section. As seen here, not all countries have cost data for all technologies.

Where no country data is available (e.g. South Africa offshore wind costs), we apply the global cost data from IRENA. Where only medium cost data is available (e.g. Brazilian open-field PV), we take the medium cost and scale it by and at the global level to produce the low and high cost estimates. This means we take the ratio between high/medium/low costs at the global level and apply this at the national level.

When doing this, we apply bounds to ensure that the country-level high cost estimate is between 120% of the medium cost estimate, and the global highcost estimate, while the country-level low cost estimate is between 80% of the medium cost estimate and the global low-cost estimate. This ensures that country level costs do not fall below the global low-cost estimate or above the global high-cost estimate.

In the case of rooftop PV, there is medium costs data for the base year 2019 for all countries, except Indonesia where we have no data at all. However, there is no estimate of the high/low costs, at either a global or national level. We focus first on producing high/low cost estimates for rooftop PV at the global level. For this, we use the and for open-field PV in 2010 (at the global level) and applied them to rooftop PV. After that, we applied the evolution rate of the rooftop PV's historic medium costs to the low and high curves. Now we have global low, medium, and high global costs data for rooftop PV for 2019. Then, we use the same principle that we applied to the other technologies, this time in order to have low and high costs data for rooftop PV at the national level.

At this stage, for all technologies and all countries, we have low, medium, and high costs data for the base year (2021 for onshore wind, offshore wind, Open-field PV and 2019 for Rooftop PV).

Now, we need to estimate the projected cost curves, starting with the projection of the medium curves. The same method is applied for all technologies. To do this, for a given country, we determine the relative position of the medium point compared to global data for the same year for the same technology. We then apply an evolution rate composed of a linear combination of the global evolution rates according to the relative position determined below.

Capex(c, y, t, Medium)

$$= Capex(c, y - 10, t, Medium) \\ * \left(a * \frac{Capex(World, y, t, Medium)}{Capex(World, y - 10, t, Medium)} + b * \frac{Capex(World, y, t, s')}{Capex(World, y - 10, t, s')}\right)$$

- c is the country
- y is the year
- t is the technology
- s' is low or high, depending on if the national capex is below the global capex (low) or above it (high)

And
$$b = \frac{Capex(c,y-10,t,Medium) - Capex(Global,y-10,t,s')}{Capex(Global,y-10,t,Medium) - Capex(Global,y-10,t,s')}$$

 $a = b - 1$

Finally, for the low and high curves, we use the global ratios for the same technology and year on the medium value calculated in the previous step. The value obtained is again bounded according to the constraint that the high cost should be between 120% of the medium country-level cost and the global high cost, and the low cost should be between 80% of the medium country-level cost and the global low cost. The low-to-high envelope is then also consistent with global trends, while taking into account the specificity of each country.

Results

 \rightarrow Table A5 summarizes the data used at the end for the model, with costs in 2021USD/kW.

Country	Technology	Scenario	2021	2030	2040	2050
		Low	842	825	736	647
	Onshore	Medium	1150	1031	920	808
		High	1960	1294	1138	979
		Low	2052	1802	1643	1484
	Offshore	Medium	2858	2597	2412	2226
		High	5641	3392	3180	2968
Brazil			577	360	268	175
	Open-field PV	Modium	021	500	452	210
		High	1885	836	657	475
		Low	020	500	207	275
	Pooffon DV	Modium	1150	604	402	2/3
			1075	1010	403	543
		High	1875	1018	788	559
	Orahama	LOW	968	828	/39	649
	Unshore		1157	1036	923	811
		High	1514	1300	1143	983
		Low	2406	1802	1643	1484
	Offshore	Medium	2857	2596	2411	2225
China		High	3474	3391	3179	2967
		Low	502	323	242	160
	Open-field PV	Medium	628	403	302	200
		High	1436	573	438	299
	Rooftop PV	Low	616	334	258	183
		Medium	770	418	323	229
		High	1255	681	526	373
		Low	1127	980	881	779
	Onshore	Medium	1712	1317	1153	989
		High	2182	1580	1384	1187
		Low	3603	2105	1929	1753
	Offshore	Medium	3739	3034	2832	2630
Cormony		High	4452	3640	3399	3156
Germany		Low	554	360	268	175
	Open-field PV	Medium	693	462	349	235
		High	1585	656	506	351
		Low	1068	580	449	319
	Rooftop PV	Medium	1335	725	561	399
		High	2177	1181	915	649
		Low	755	698	632	565
	Onshore	Medium	926	873	790	706
		Hiah	1057	1096	977	855
		Low	1859	1809	1650	1490
	Offshore	Medium	2876	2608	2422	2236
		High	6917	3392	3180	2968
India		Low	472	297	221	145
	Open-field P\/	Medium	590	371	221	193
		High	12/0	507	///1	270
		Low	620	346	268	100
	Pooffor DV	Modium	707	J40 /22	200	700
			1000	433	534	237
		mian	1299	705	545	387

<u>Table A5</u> Capex data

Country	Technology	Scenario	2021	2030	2040	2050
		Low	1232	929	838	745
	Onshore	Medium	1545	1249	1098	946
		High	2260	1499	1317	1135
		Low	1859	1809	1650	1490
	Offshore	Medium	2876	2608	2422	2236
Indonesia		High	6917	3392	3180	2968
Indonesia		Low	852	457	344	229
	Open-field PV	Medium	1265	790	619	448
		High	1960	947	743	537
		Low	1206	655	507	360
	Rooftop PV	Medium	1656	899	697	495
		High	2700	1465	1136	806
		Low	1149	1023	917	808
	Onshore	Medium	1892	1375	1201	1026
		High	2924	1650	1441	1231
		Low	2052	1802	1643	1484
	Offshore	Medium	2858	2597	2412	2226
South Africa		High	5641	3392	3180	2968
South Africa		Low	577	360	268	175
	Open-field PV	Medium	857	622	482	342
		High	1960	884	698	510
		Low	1292	702	543	386
	Rooftop PV	Medium	1774	963	747	530
		High	2700	1465	1136	806

A3: Existing capacities

We use existing capacity to parameterise the PyPSA model. To do this, we use IEA data from their Renewable 2022 report . We treat PV utility-scale as open-field PV and PV commercial and residential as rooftop PV. \rightarrow Table A6 shows the data used.

Country	Technology	Capacity in 2021 (MW)
	Onshore	20800
Duesil	Offshore	0
Brazii	Rooftop PV	8600
	Open-field PV	4500
	Onshore	303700
	Offshore	25900
China	Rooftop PV	107600
	Open-field PV	200200
Germany	Onshore	56400
	Offshore	7500
	Rooftop PV	43800
	Open-field PV	15200
	Onshore	40300
India	Offshore	0
IIIula	Rooftop PV	9400
	Open-field PV	41200
	Onshore	200
Indonasia	Offshore	0
Indonesia	Rooftop PV	100
	Open-field PV	100
	Onshore	3100
South Africa	Offshore	0
South Anica	Rooftop PV	400
	Open-field PV	2200

<u>Table A6</u> Current installed capacities used

A4: Bottom-up assessment of technical potential of renewable energy sources

To assess the technical potential of renewable energy sources for different countries, we developed a python-based simulation pipeline, applying the temporally and spatially-resolved simulation models of the open-source python packages GLAES (Geospatial Land Eligibility for Energy Systems) and RESKit (Renewable Energy Simulation Toolkit).

Table A7

Exclusion factors and underlying assumptions in land eligibility analysis At first, the land eligibility analysis, evaluates the amount and distribution of suitable area of land/ocean for installing wind turbines and PV modules. The land eligibility assessment considers a comprehensive set of exclusion factors and constraints informed by the literature review. These reflect the most common (socio-political, physical, conservation, pseudo-economic) constraints for placement of wind turbines and PV modules commonly considered in renewable potential studies. \rightarrow Table A7 provides an overview of exclusion factors applied in our analysis for different renewable technologies.

Technology	Aspect	Description	Exclusion buffer limits	Source
	Regional boundaries	500m buffer distance from regional boundaries excluded	≤500 m	
	Primary roads	500m buffer distance from primary roads excluded	≤500 m	
	Railways	500m buffer distance from railways excluded	≤500 m	xi
	Waterways (Rivers)	150m buffer distance from waterways excluded	≤150 m	xi
	Airports	5000m buffer distance from airports excluded	≤5000 m	xi
	Urban settlements	1000m buffer distance from urban settlements excluded	≤1000 m	
	Woodlands	Base assumption: 300m buffer distance from woodlands (tree cover, broadleaved, needle leaved, mixed leaf type) excluded	≤300 m	xi
	Woodlands	Sensitivity: 300m buffer distance from naturally regenerating forests	≤300 m	xi
Onchase wind	Water bodies	1000m buffer distance from water bodies excluded	≤1000 m	viii
Onshore wind	Protected areas	1000m buffer distance from protected parks, monuments, reserves, and wildernesses excluded	≤1000 m	xi
	Bird protected areas	1500m buffer distance from protected habitats and bird areas excluded	≤1500 m	xii
	Elevation	Terrain elevation above 1500 m excluded	≥1500 m	xi
	Terrain Slope	Areas with a terrain slope angle above 17° excluded	≥17°	xi
	Water depth	Water depths greater than the maximum (200m) excluded	≥200 m	xii
	Distance to shore	5000 m buffer distance from shore excluded	≤5000 m	Own assumption based on ranges given in literature
	Protected areas	3000 m buffer distance from protected areas excluded	≤3000 m	Own assumption based on regional aspects and ranges given in literature
	Bird protected areas	5000 m buffer distance from bird protected areas excluded	≤5000 m	xiii
	Shipping routes	2600m buffer distance from shipping routes	<= 2600 m	xiii

Technology	Aspect	Description	Exclusion buffer limits	Source
	Primary roads	50m buffer distance from primary roads included	≤50 m	Own assumption
	Railways	50m buffer distance from railways included	≤50 m	Own assumption
	Airports	0m buffer distance from airports excluded	≤0 m	Own assumption
	Urban settlements	500m buffer distance from urban area excluded	≤500 m	Own assumption
	Woodlands	Om buffer distance from woodlands (tree cover, broadleaved, needle leaved, mixed leaf type) excluded	≤0 m	Own assumption
	Water bodies	0m buffer distance from water bodies excluded	≤0 m	Own assumption
Open-field PV	Protected areas	Om buffer distance from protected parks, monuments, reserves, and wildernesses excluded	≤0 m	Own assumption
	Agricultural areas	Om buffer distance from agricultural land, (cropland (rainfed), cropland (rainfed with tree or shrub cover), cropland (irrigated), cropland (mosaic), natural vegetation (mosaic)) excluded	≤0 m	Own assumption based on x
	Elevation	Terrain elevation higher than 1750m excluded	≥1750 m	х
	Slope: Total	Areas with a terrain slope angle above 10° excluded	≥10°	х
	Slope: Northward	Areas with a north-facing slope angle above 3° excluded	≥3°	х
Rooftop PV	Population density	Only areas with a non-zero population density taken into account	-	x

The land eligibility analysis is performed step-wise, where different constraints and exclusion criteria, as indicated in \rightarrow Table A7, are applied one after the other.

After the land eligibility analysis conducted by GLAES, the placement algorithm RESkit identifies locations of individual turbines/PV modules within the eligible areas. For wind turbines, the algorithm also includes an optimisation which varies the technical design parameters of turbine over a given range to derive the cost-optimal level of hub height and rotor diameter which leads to the minimum levelized cost of electricity (LCOE) for each location. This is followed by hourly simulation of generation profiles for each location, accounting for wind speed/solar irradiance data at the location. As an output of this modelling step, installed capacity, generation profiles as well as LCOEs are determined for each location. The results are aggregated to a national context to get the country's maximum technical potential for different renewable energy sources.

→ Table A8 provides an overview of assumptions made in this work regarding the baseline turbine design for onshore and offshore applications. → Table A9 gives an overview on range of assumptions made for different possible levels of turbine's technical design parameters in the optimisation algorithm embedded in our renewable potential analysis framework. → Table A10 provides the characteristics of PV modules applied in this study for open-field and roof-top applications as well as the economic assumptions.

Table A8 Baseline turbine's technical design and economic parameters

Technology	Aspect	Assumption & parameter choice	Source
	Hub height	101m	vi and <u>https://en.wind-</u> <u>turbine-models.com/</u> <u>turbines/1719-ge-general-electric-ge-</u> <u>4.8-158-cypress</u>
	Rotor diameter	158m	V
Onshore wind	Capacity	4.8MW	V
	Specific power	245 W m ⁻²	V
	Annual operating cost	2% capex	vi
	Economic lifetime	20 years	https://www.nrel.gov/analysis/tech- footprint.html
	Hub height	94m	xiv
	Rotor diameter	140m	V
	Capacity	5.5MW	v
Offebere wind	Specific power	357 W m ⁻²	-
Onshore wind	Foundation type	Monopile/ fixed	-
	Annual operating cost	2% capex	vi
	Economic lifetime	20 years	https://www.nrel.gov/analysis/tech- footprint.html

Table A9	Technology	Aspect	Assumption & parameter choice	Source
Range of assumptions and parameter	Onshore wind	Hub height	80m, 99m	Own assumptions based on the typical ranges and the optimal value derived from sensitivity analysis
		Rotor diameter	80, 100, 117, 136	Same as above
choices made		Capacity	0.8MW, 1 MW, 2MW, 2.4MW, 3MW	Same as above
for turbine		Hub height	110m, 130m, 150m	Same as above
technical design parameters		Rotor diameter	141, 180, 200, 220	Same as above
	Offshore wind	Capacity	3MW, 5MW, 7MW, 9MW	Same as above
		Foundation type	Fixed foundation (<100 m depth), floating foundation (≥100m depth)	Own assumption

Table A10	Technology	Aspect	Assumption & parameter choice	Source
Selected		Module name	LG_Electronics_IncLG350Q1C_A5	XV
PV module		Pmp	350 W	XV
		Area	1.7272 m ²	XV
characteristics		Efficiency	20%[3]	xvi
for open-field		Technology	Mono-crystalline / N-type	XV
and roof-top applications	Open-field PV	Coverage	30 m ² land kWp ⁻¹	Own assumption based on the insights from viii
		Type (fixed tilt/single axis tracking)	Fixed-tilt	viii
		Operating Cost	1.7% capex	viii
		Economic lifetime	25 years	https://www.nrel.gov/analysis/tech- footprint.html
		Module name	LG_Electronics_IncLG350Q1C_A5	XV
		Pmp	350 W	XV
		Area	1.7272 m ²	XV
		Efficiency	20%	xvi
		Technology	Mono-crystalline / N-type	XV
	Rooftop PV	Coverage	9.57 m ² land kWp ⁻¹	Own assumption based on the insights from xxii
		Type (fixed tilt/single axis tracking)	Fixed-tilt	viii
		Operating Cost	1.7% capex	xiii
		Economic lifetime	25 years	https://www.nrel.gov/analysis/tech- footprint.html

A5: Results from renewable potential analysis for selected countries

This section shows the final results from renewable potential analysis for India, to provide an example of the possible results of the work.

-> Figure A1 shows the results from land eligibility analysis for India.

In addition, the renewable potential assessment framework derives the distribution of full load hours (FLH) as well as levelized costs of electricity (LCOE) for different renewable energy sources. For instance, \rightarrow Figure A2 visualises the LCOE distribution over eligible areas for onshore wind, offshore wind, Open-field PV and PV residential/Rooftop for India.

Figure A2 Techno economic potential of variable renewable energy sources in India: spatial distribution of LCOE for different renewable technologies

Note: This is based on medium cost scenario assumptions for 2021 and legend unit is 2021\$/kWh.

The sites with higher LCOE mainly correspond to those locations with lower full load hours and vice versa. \rightarrow Figure A3 visualises the distribution of full load hours over eligible areas.

Figure A3

Note: Legend unit is hour/yearunit is 2021\$/kWh

Finally, \rightarrow Table A11 provides an overview of maximum technical potential in terms of GW capacity and TWh / yr of generation for different renewable technologies and for all selected countries.

Country	Technology	Capacity in 2021 (MW)	Generation (TWh/yr)	<u>Table</u>
Brazil	Onshore	4 585	14 898	Maxin
	Offshore	2 111	9 768	count
	Open-field PV	57 555	160 260	techr
	Rooftop PV	251	479	notontial in to
China	Onshore	4 703	15 892	
	Offshore	1 747	7 688	of Gw capa
	Open-field PV	65 766	199 333	and TW
	Rooftop PV	1 307	2 331	of genera
Germany	Onshore	216	774	for diffe
	Offshore	95	496	renew
	Open-field PV	1 376	3 245	technolo
	Rooftop PV	139	153	

Technoeconomic potential of variable renewable energy sources in India: Spatial distribution of Full load hours for different renewable technologies

Country	Technology	Capacity in 2021 (MW)	Generation (TWh/yr)
	Onshore	2 681	7 949
India	Offshore	1 242	4 372
India	Open-field PV	8 935	23 513
	Rooftop PV	724	1 557
	Onshore	667	1 546
Indonasia	Offshore	4 008	13 970
Indonesia	Open-field PV	9 475	11 293
	Rooftop PV	276	291

Endnotes

- i Byers, E. et al. AR6 Scenarios Database hosted by IIASA. (2022).
- ii Climate Analytics. 2030 targets aligned to 1.5°C: evidence from the latest global pathways. (2023). Available at: <u>https://climateanalytics.org/publications/2023/2030-targets-aligned-to-15c-evidence-from-the-latest-global-pathways/</u>.
- iii Grubler, A. et al. A low energy demand scenario for meeting the 1.5 °C target and sustainable development goals without negative emission technologies. Nature Energy 3, 515–527 (2018).
- iv Sferra, F. et al. Towards optimal 1.5° and 2 °C emission pathways for individual countries: A Finland case study. Energy Policy 133, 110705 (2019).
- v IRENA. Renewable power generation costs in 2021. (2022).
- vi IRENA. Renewable power generation costs in 2019. (2020).
- vii IRENA. Future of Wind 2019. (2019).

viiiIRENA. Future of Solar PV 2019. (2019).

- ix IEA. Renewables 2022. (2022).
- Ryberg, D. S. Generation Lulls from the Future Potential of Wind and Solar Energy in Europe. vol. 521 (2019).
- xi Ryberg, D. S., Tulemat, Z., Stolten, D. & Robinius, M. Uniformly constrained land eligibility for onshore European wind power. Renewable Energy 146, 921–931 (2020).
- xii Caglayan, D. G. et al. The techno-economic potential of offshore wind energy with optimized future turbine designs in Europe. Applied Energy 255, 113794 (2019).

- xiiiBWE. Wind Industry In Germany. <u>http://www.wind-energy-market.com/</u> windturbines/vestas-v82-15-mw-neg-micon-nm-821500/151/ (2021).
- xiv Wang, S., Nejad, A. R. & Moan, T. On design, modelling, and analysis of a 10-MW medium-speed drivetrain for offshore wind turbines. Wind Energy 23, 1099–1117 (2020).
- xv LG Electronics. 60 Cell. 4-5 (2020).
- xvi Fraunhofer ISE. Photovoltaics Report. (2023).

NewClimate – Institute for Climate Policy and Global Sustainability gGmbH

Cologne Office Waidmarkt 11a 50676 Cologne, Germany

Berlin Office Schönhauser Allee 10-11 10119 Berlin, Germany

Phone: +49 221 999 83 300 Email: info@newclimate.org Website: <u>www.newclimate.org</u>

Climate Analytics gGmbH Ritterstraße 3 10969 Berlin, Germany Phone: +49 (0)30 2 59 22 95 20 Email: contact@climateanalytics.org Website: <u>www.climateanalytics.org</u>

