OVERVIEW

Air Pollution Impact Model for Electricity Supply **AIRPOLIM-ES**

Tessa Schiefer Harry Fearnehough October 2019

-

Ambition

Action

to

Before we start...

Who we are and project context

NewClimate Institute:

Germany-based research institute/ think tank active in international climate policy

Ambition to Action:

3-year project funded under the German International Climate Initiative (IKI) implemented by NewClimate Institute and ECN, part of TNO

Objectives:

Support and accelerate further development and implementation of NDCs in four partner countries

MEASURING THE HEALTHS IMPACTS OF AIR POLLUTION

Methodology and data inputs

Introduction

From air pollutants to health effects

Sources of air pollutants

Energy and air pollution

Agriculture; solvents; and waste

Fuel supply 🛢

Extraction, storage, transport, and transformation of fossil fuels

Cooking, heating, and lighting

PM_{2.5} NO_x SO₂

Power **A**

Combustion of coal, oil, gas, bioenergy, and waste

Industry

Fuel combustion; process emissions

Transport 🖚

Exhaust fumes; brake, tyre and road wear; and fuel evaporation

Impact Pathway Approach

Methodological framework

Impact Pathway Approach

 $\sum_{i}^{N} P_{i} \times \Delta C_{i} \times BR$

Zhou et al. 2006 coefficients

Intake Fraction =

Intake fraction coefficients for population residing within bands of 0–100 km, 100–500 km, 500–1,000 km, and 1,000–3,300 km from emission source \rightarrow interpretation of coefficients: if population increases by 1 million, the intake fraction increases by x

(Zhou et al. methodology: Step 1: Estimation of intake fractions through dispersion modelling for 29 Chinese coal power plants and population mapping; Step 2: Regression with estimated intake fraction as dependent and population within distance bands as independent variable)

Widely used approach, e.g. in the following studies: IMF (2014) Getting Energy Prices Right, Greenpeace International (2014) South Africa Study, Cropper et al. (2012) The Health Effects of Coal Electricity Generation in India

Key data inputs required in the model

Plant data

Lifetime Installed capacity Capacity factor Heat rate (efficiency) Emissions control Location

Population mapping

Gridded population data GIS Mapping

Population data

Country-specific mortality rates Share of population per age category Life expectancy at specific age Population growth estimates

Input data

Inside the Excel tool

Plant data

Source: Global Coal Plant Tracker (2019), WorldPop, GIS mapping results

Enter "1" if power plant should be included in analysis, "0" if not Do not enter value below 2020

2020 Enter "default"

Enter "default" if not known Enter "default" if not known

	Plant_List Plant_	ID Scenario_L	_ist de_Swite	h lant_Fu	el lant_Ty	e ant_Countr	y Plant_Statu	s ant_StartDate	e t_Lifetime	Plant_Cap		Plant_Em	issionControl	Plant_PM2.5	Plant_NOx	Plant_SO2	Plant_Lat	Plant_Long	Plant_Ef	t_AnnualGen	Plant_LifeGei
Plant		Scenario	Include	Fuel	Туре	Country	Status	Start of operations	Lifetime	Capacity	Capacity factor	Heat rate	Emissions control	PM2.5 emissions factor	Nox emissions factor	SO2 emissions factor	Latitude	Longitude	Plant efficiency	Annual electricity generation	Lifetime electricity generation
text	text			text	text	text	text	date	years			Btu/KWh	text	t/GWh-th	t/GWh-th	t/GWh-th	degrees (°)	degrees (°)		GWh	GWh
Baganuur Pauer LL	C BAG	New Capacity		1 Coal	Coal	Mongolia	Announced	2023	60	700	65%	9,250	Average	default	default	default	47.7839	108.3722	37%	3,986	239,148
Capacity expansion	of Choiba CHO2	New Capacity		1 Coal	Coal	Mongolia	Announced	2022	60	50	65%	10,576	Average	default	default	default	48.0899	114.5416	32%	285	17,082
Choibalsan CHP	CHO	Existing Capacit	у	1 Coal	Coal	Mongolia	Announced	2019	57	36	65%	10,576	Average	default	default	default	48.0899	114.5416	32%	205	11,684
CHP 3	CHP3a	Existing Capacit	У	1 Coal	Coal	Mongolia	Announced	2019	8	157	65%	10,576	Average	default	default	default	47.8956	106.8651	32%	894	7,152
CHP 3 Extention	CHP3b	New Capacity		1 Coal	Coal	Mongolia	Announced	2023	60	250	65%	10,576	Average	default	default	default	47.8956	106.8651	32%	1,424	85,410
CHP 3 Extention 2	CHP3c	New Capacity		1 Coal	Coal	Mongolia	Announced	2023	60	75	65%	10,576	Average	default	default	default	47.8956	106.8651	32%	427	25,623

Population

Source: WorldPop, GIS mapping results, Zhou et al. (2006

Population coverage In-country PopCoverage Switch 2020 WorldPop year: Plant ID Plant Country In-country In-country In-country In-country All countries All countries All countries All countries In-country In-country In-country In-country population population population population Exposed within radius within radius within radius population over Plant 100 - 500 km 500 - 1000 km 1000 - 3300 km 100 - 500 km 500 - 1000 km 1000 - 3300 km 100 km 100 km Lamu power station Reference REF1 Kenya 0.27 22.28 23.71 0.06 0.37 35.06 111.35 612.06 41% 18,760 61.52 18.760 Kitui power station Unit 1 Refere REF2 1.68 42.04 2.60 2.27 161.43 636.29 41% Kenya Kitui power station Unit 2 Refere REF3 1.68 42.04 2.60 2.27 61.52 161.43 636.29 41% 18,760 Kenya Kitui power station Unit 3 Refere REF4 Kenya 1.68 42.04 2.60 2.27 61.52 161.43 636.29 41% 18,760

Data Sources: Plant data

Data sources: Population mapping

Data sources: Population data

AIR POLLUTION HEALTH IMPACT INDICATORS

Illustrative results

Outputs

Emissions

Annual and lifetime emissions for:

Health Impacts

Annual and lifetime premature deaths and years of life lost for:

Available on plant, scenario and country level & restricted to country population or for all affected population

- PM_{2.5}
- *NO_x*
- *SO*₂

- Lung cancer
- Chronic obstructive pulmonary disease
- Ischemic heart disease
- Stroke

Number of premature deaths

15

Number of years of life lost

Illustrative results

Emissions

17

APPLICATIONS OF AIRPOLIM-ES

Published and ongoing application of AIRPOLIM-ES

Air pollution health impact assessment in Kenya

Illustrative results

* Reference case: Lamu power station: 981 MW (start: 2024), Kitui power station: 960 MW (start: 2034); Alternative case: Lamu power station: 450 MW (start: 2034); assumed lifetime of all coal-fired power plants is 30 years

DISCUSSION

Limitations and challenges

Considerations for the accuracy and interpretation of results

ZHOU ET AL. (2006) COEFFICIENTS

Limitations: Not taking into account stack height, meteorological conditions and other location specific factors

EMISSION FACTORS

Limitations: Only provide approximate emission estimations, however plant-specific factors can be entered if available

LINEAR CONCENTRATION RESPONSE FUNCTIONS FROM GLOBAL BURDEN OF DISEASE STUDY

Limitations: Concentration response functions are assumed to be linear in a way that health effects are independent from the initial level of pollution. This is a simplified approach used in many other studies.

HEALTH IMPACT ESTIMATES FOR POPULATION OUTSIDE OF ANALYSIS COUNTRY

Limitations: Those estimates do not take into account country-specific characteristics (including population growth, mortality rates and age shares) but assume those of the country where the power plant is located.

GIS KNOWLEDGE

Estimating population exposure requires at least basic knowledge of geographic information system software

EXCEL KNOWLEDGE

Using the model requires intermediate Excel knowledge / experience

QUESTIONS / COMMENTS / FEEDBACK

Tessa Schiefer t.schiefer@newclimate.org Harry Fearnehough h.fearnehough@newclimate.org

